Reproduction in Vertebrates

The role of the following reproductive strategies in animals in maximising reproductive success in different environments (using relevant examples):

- External fertilisation and internal fertilisation
- Ovipary, ovovivipary and vivipary
- Amniotic egg
- Precocial and altricial development
- Parental care

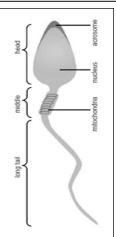
External fertilisation:

- A. Sperm fertilize the egg cell OUTSIDE the female body.
- B. Water is always required, physical contact not required.
- C. Disadvantages: Chance of fertilisation is reduced and large amounts of sperm needed.
- D. Zygote not well protected from predators.

Internal fertilisation:

- A. The male deposits sperminside female bod where fertilisation occurs
- B. Advantages: Chances of fertilisation increased and small amounts of sperm need to be produced
- C. Zygote is **well protected inside the female body**.

	Ovipary	Ovovivipary	Vivipary
fertilisation	external or internal	internal	internal
development of embryo	external to the body of the female	inside the body of the female	inside the female's body
nutrition	Yolk is the only form of nutrition for the developing embryo and is usually present in small quantities	Yolk present in the egg. Young are independent of the mother's body	Young receive nutrition from the mother's body through the placenta
type of egg	jelly-like or calcareous	calcareous or leathery	None


AMNIOTIC EGG Extra embryonic membranes:

- A. Chorion:
 - allows oxygen to enter and CO2 to leave through to the shell and out
- B. Amnion:
 - membrane enclosing the amniotic cavity which contains <u>amniotic fluid</u> which <u>protects</u> the embryo against <u>mechanical damage</u>, temperature change and dehydration.
- C. Allantois:
 - stores <u>waste produced</u> by the embryo;
 - also functions in gaseous exchange
- D. Yolk sac:
 - provides **nourishment** to the embryo
- E. Shell:
 - prevents dehydration and
 - gives protection

	Precocial development	Altricial development
Development of the body	well developed	under developed
Eyes after birth	open	closed
Presence of fur / feathers	have fur / feathers	usually naked
Parental care required	low degree of parental care required	high degree of parental care required
Mobility	young can move soon after birth	young have limited ability to move freely
Yolk amount in egg	greater quantity	lower quantity

ROCESS OF SPERMATOGENESIS AND FORMATION OF SEMEN

- Spermatogenesis takes place under influence of testosterone
- 2. In <u>seminiferous</u> tubules in testes
- Diploid germinal epithelial cells undergo meiosis
- 4. to form <u>haploid sperm</u>

Human reproductive system

- <u>Scrotum</u> <u>Protection</u> and <u>temperature</u> control.
- <u>Testis</u> produce <u>sperm cells</u>. Sertoli cells gives nutrients, cells of Leydig secretes <u>Testosterone</u>
- Epididymis store sperm for maturation.
- Vas deferens transport sperm from testis to urethra.
- Seminal vesicle nutrients
- Prostate alkaline fluid
- Coper's glad movement of sperm
- <u>Urethra</u> <u>transport urine and semen</u>
- Penis Copulation and ejaculation.

OOGENESIS

Developing

Oestrogen

Pituitary

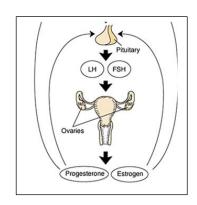
gland LH

Corpus luteum

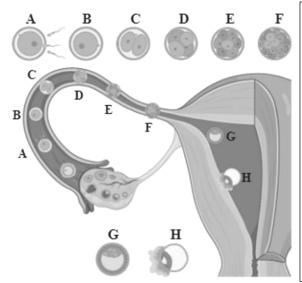
Progesterone

follicle

- Under the influence of <u>FSH</u>
- <u>diploid</u> (germinal epithelium) <u>cells</u> in the <u>ovary</u>
- undergo <u>mitosis</u> to form <u>numerous follicles</u>
- One of these follicles enlarges and
- undergoes meiosis
- Of the four cells produced, only <u>one survives</u> to form the <u>haploid ovum</u>


STRUCTURE AND FUNCTION OF OVUM

- ☐ Haploid nucleus
- ☐ <u>fuses with sperm's nucleus</u> to form
- ☐ diploid zygote
- ☐ jelly layer protects ovum
- □ and makes the ovum <u>impenetrable</u> <u>after fertilisation</u>


HORMONAL CONTROL OF MENSTRUAL CYCLE

Pituitary gland FSH OVARIAN AND UTERINE cycles)

- ☐ **FSH** is secreted by the **pituitary gland**
- ☐ FSH stimulates the **development of a primary follicle** into a **Graafian follicle**.
- ☐ As the **Graafian follicle develops**, it **secretes Oestrogen**
- ☐ Which causes the lining of the uterus endometrium to become thicker/more vascular. In preparation for a possible implantation.
- ☐ The pituitary gland secretes LH
- ☐ Which causes the **Graafian follicle to rupture**, releasing the ovum **Ovulation**.
- ☐ Graafian follicle becomes the corpus luteum which secrete progesterone.
- ☐ Which causes <u>further thickening of the endometrium.</u>
- ☐ High levels of progesterone inhibit the secretion of FSH
- ☐ Which <u>prevents the development</u> of a <u>new follicle</u> in the ovary.
- ☐ If there is **no fertilisation**, the corpus luteum degenerates.
- Which leads to a <u>drop</u> in the <u>progesterone levels</u>
- ☐ The **endometrium disintegrates** and is shed during **menstruation**
- ☐ If <u>fertilisation occurs</u>, the <u>corpus luteum remains intact</u>
- ☐ Which leads to <u>high levels</u> of <u>progesterone</u>

- ☐ To maintain the pregnancy
- ☐ The **secretion of progesterone** is eventually taken over by the **placenta**

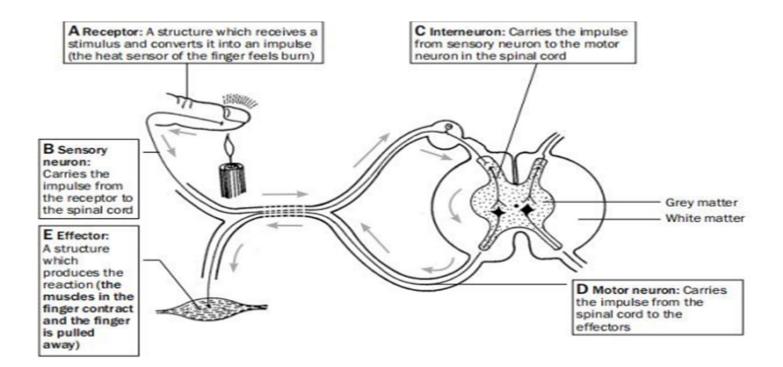
FERTILISATION

- A. In the **fallopian tubes**
- B. The <u>nucleus of the sperm</u> fuses with the <u>nucleus of the ovum</u>
- C. to form a diploid zygote
- D. The zygote divides by mitosis
- E. to form a ball of cells
- F. called the morula
- G. The morula then develops into a hollow ball of cells
- H. called the blastula

EVENTS AFTER IMPLANTATION

- The embryo continue to divide to to form a foetus
- ❖ Enclosed in membrane called the <u>amnion</u> filled with <u>amniotic fluid</u>
 - 1. which protects the fetus against temperature fluctuations
 - 2. **dehydration** and
 - 3. mechanical injuries/acts as a shock absorber.
 - 4. The chorionic villi and the endometrium form the placenta secretes progesterone.
- ❖ <u>Umbilical</u> cord
 - 1. Umbilical vein carries absorbed nutrients and oxygen from mother to foetus
 - 2. <u>Umbilical artery</u> carries the <u>waste and carbondioxide away</u> from the fetus to the mother.

Central nervous system


- Brain and spinal cord protected by meninges
 - A. Medulla oblongata heartrate and breathing
 - B. Cerebrum cognitive ablilities
 - C. Corpus callosum connection.
 - D. Cerebellum balance
 - E. Spinal cord reflex

AUTONOMIC NERVOUS SYSTEM

- Every organ/gland is controlled by two sets of nerves/double innervation
- that act <u>antagonistically</u> to <u>control involuntary events</u>
- Sympathetic nerves stimulates
- Parasympathetic nerves inhibit a response

PHERIPHERAL NERVOUS SYSTEM

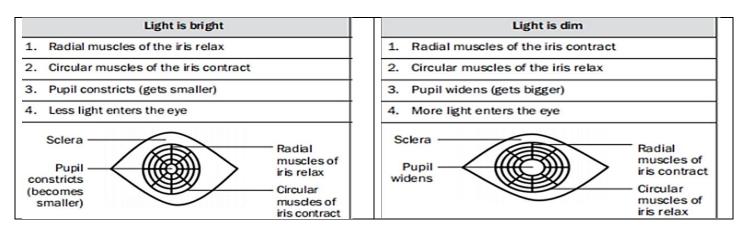
Sensory neuron \rightarrow inter neuron \rightarrow Motor neuron

REFLEX ACTION AS A RESULT OF A REFLEX ARC

- > Receptor convert stimulus into an impulse
- > which is transmitted to the spinal cord
- via sensory neuron
- > Connector neuron transmits the impulse via the motor neuron to the effector/muscles

Causes and symptoms of:

☐ Alzheimer's disease

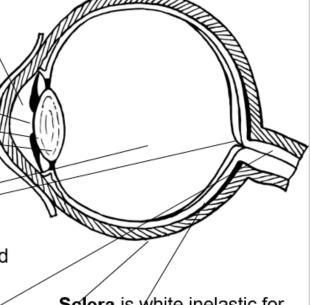

Multiple sclerosis

Note: Any disorder can be asked if the condition is explain in the extract (Learners have to read the extract)

The Eye

STRUCTURAL SUITABILITY OF LENS

- 1. Elastic, change shape accommodation
- 2. Transparent to allow light rays to pass through
- 3. Biconvex to refract light rays



THE EYE

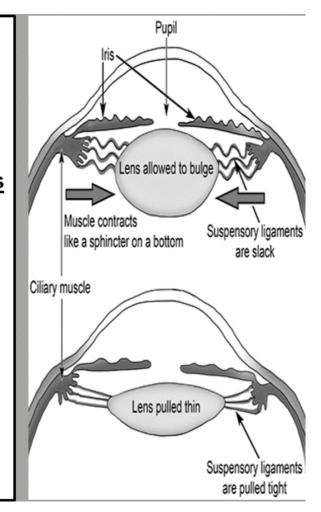
Light enters the eye through the cornea which refracts light

It then passes through the <u>aqueous</u> humour

- and the **pupi**l
- The size of the pupil is adjusted by the iris that regulate the amount of light.
- The light passes through the <u>lens</u> which further <u>refracts the light</u>
- then through the <u>vitreous humour</u> and
- reaches the retina's yellow spot
- which has <u>photoreceptors</u>/ rods and cones which convert the light into nerve impulse
- The impulse is sent via the <u>optic</u> nerve to the <u>cerebrum</u>
- where the image is interpreted

Sclera is white inelastic for protection around eye.

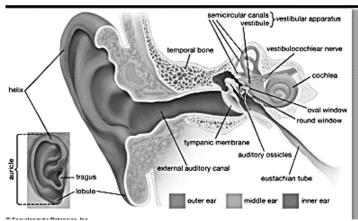
Choroid have blood with nutrients and gasses.


ACCOMODATION

(objects closer than 6m)

- Ciliary muscles contract
- Suspensory ligaments slacken
- Tension on the lens decreases
- Lens becomes more convex
- Refractive power of lens increases
- A clear image falls on the retina

(objects further than 6m)


- Ciliary muscles relax
- Suspensory ligaments become taut
- Tension on the lens increases
- Lens becomes less convex
- Refractive power of lens decreases
- A clear image falls on the retina

Visual defect	Nature of the defect	Corrective measures	
Short- sightedness Near objects can be seen clearly (myopia)	 Inability of lens to become more flat/eyeball is longer than normal Lens bends the light rays too much As a result it falls in front of the retina causing the image to be blurred Cannot see distant objects clearly 	Wearing glasses with converging (biconcave) lens Figure 6.12 A	Normal vision
Long- sightedness Objects far away can be seen clearly (hyperopia)	 Inability of lens to become more convex/eyeball is shorter than normal Lens does not bend light rays enough As a result it falls behind the retina causing the image to be blurred Cannot see near objects clearly 	Wearing glasses with converging (biconvex) lens Figure 6.12 B	Hyperopia Myopia
Astigmatism	The curvature of the lens or cornea is uneven resulting in distorted images	Glasses with lenses shaped to correct the distortion	
Cataracts	Lens becomes cloudy and opaque	Surgery to replace the lens with a synthetic lens	Astigmatism

HEARING

- Sound waves are directed by the pinna
- 🦻 through the <u>auditory canal</u>
- 🦻 to the **tympanic membrane** causing it to **vibrate**
- Vibrations are transferred to the ossicles, which enhance and transfer vibrations
- which causes the **oval window to vibrate**
- This sets up pressure waves in the perilymph
- Pressure waves are transferred to the endolymph in the cochlea
- Organ of Corti is stimulated to convert the stimulus into an impulse
- which is then transported along the **auditory nerve**
- to the cerebrum where the sound is interpreted

BLOCKED EUSTACHIAN TUBE

- Air will not equalise pressure
- on both sides of tympanic membrane
- Tympanic membrane/ossicles may not vibrate freely
- orlead to the tympanic <u>membrane</u> <u>bursting</u> and lead to <u>hearing loss</u>

BALANCE

Change	es in the direction and speed of movement of the head		
	causes the endolymph to move in the semi-circular canals		
	convert the stimulus into an impulse	Position of the cristae and macula	
	which is transmitted via the auditory nerve	The role of the macula, cristae and	
	to the <u>cerebellum</u> from which	auditory nerve and the cerebellum.	
	impulses are transmitted via motor neurons	Macula is stimulated by the position	
	to the skeletal muscles /effector to restore balance to the body	of the head	
Changes to the position of the head.		Cristae is stimulated by die speed and	
	causes the endolymph to move in the semi-circular canals	movement of the head (the head must be in the answer to receive the mark, as well as the fact that the movement or gravity stimulates the	
	which stimulates the <u>macula</u>		
	found in the utriculus and sacculus to		
	convert the stimulus into an impulse		
	which is transmitted via the auditory nerve	macula and cristae	
	to the <u>cerebellum</u> from which		
	impulses are transmitted via motor neurons		
	To the skeletal muscle / effector to restore balance to the body		

DIFFERENCES BETWEEN AN ENDOCRINE AND EXOCRINE GLAND

- ☐ Exocrine glands release their <u>secretions into ducts</u> (glands with ducts)
- ☐ Endocrine glands release their secretions directly <u>into the blood</u> stream(ductless glands)

DEFINITION OF A HORMONE

- > It is a **chemical messenger**
- > that is **protein** in nature
- > Secreted by glands, but
- > act on target organs (far from the glands)

Hypothalamus:

ADH (antidiuretic hormone)

- Target organ: Kidney
- Controls the concentration of water in the blood

Thyrold gland:

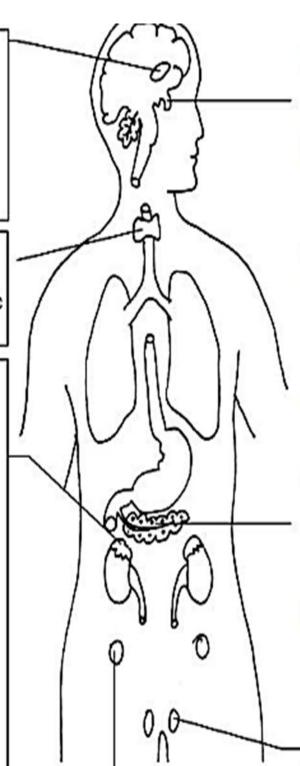
Thyroxin

 Controls basic metabolic rate

Adrenal gland:

Adrenalin

Increases:


- heartbeat
- blood pressure
- conversion from glycogen to glucose
- blood supply to the cardiac and skeletal muscles
- skeletal muscle tone
- rate and depth of breathing
- · diameter of pupils

Decreases:

 blood flow to the digestive system and skin

Aldosterone

- · Target organ: Kidney
- Regulates salt concentration in the blood

Ovary (only females):

Reproductive hormones:

Oestrogen and progesterone

- Oestrogen stimulates puberty in females, promotes thickening of the endometrium
- Progesterone promotes thickening of the endometrium, maintains pregnancy

Pituitary gland (hypophysis): GH (growth hormone)

· Controls growth

TSH (thyroid stimulating hormone)

 Stimulates thyroid gland to secrete thyroxin

Reproductive hormones:

FSH, LH and prolactin

- FSH stimulates the development of the follicle in the ovaries
- LH stimulates ovulation, and stimulates development of the corpus luteum
- Prolactin stimulates the mammary glands to secrete milk

Pancreas: Islets of Langerhans Glucagon

 Stimulates conversion of glycogen to glucose (increases blood glucose levels)

Insulin

 Stimulates conversion of glucose to glycogen (reduces the blood glucose levels)

Testes (only males):

Reproductive hormone:

Testosterone

- Stimulates the maturation of sperm cells
- · Stimulates puberty in males